Graphing Calculator Tools for Sketchpad
Bjørn Felsager, Bjoern.Felsager@haslev-gym.dk, 2004

Since Sketchpad 4 is fully equipped with a graphing calculator—including the option of symbolic differentiation—it is now possible to include a tool package for constructing roots, maxima/minima, slopes, and areas of function graphs. These tools turn Sketchpad into a fully equipped graphing calculator allowing you to investigate numerically as well as dynamically most standard problems in elementary calculus. The tools are included in the Sketchpad file Graphing Toolit.gsp. You can download it from the Sketchpad Resource Center: http://www.dynamicgeometry.com. If you place Graphing Toolkit.gsp into Sketchpad’s Tool Folder the tools are automatically available when you open the program. You can also use the tools at any time by opening the toolkit.

The package includes 17 tools which naturally fall into two groups. The first 13 involve applications of differentiation, and use Newton’s method or search on an interval. The last four tools deal with integration. Since Sketchpad performs symbolic differentiation, it is easy to implement the tools that use Newton’s method; the tools that search on an interval are more complex. No integration methods are supplied, and the tools using numerical integration are harder to implement. They are partly explained in the sample documents about Riemann sums that are included with the program, and partly in an appendix devoted to the mathematics behind the Gauss summation method.
First part: Graph tools using differentiation

1. Root: $f(x)=0$; Click $f(x)$; SeedPt

To determine a root we use Newton’s method with 10 iterations

$$ x \to x - \frac{f(x)}{f'(x)} $$

This presupposes a seed point fairly close to the desired root.

To use the Newton’s method Root tool, first click the function $f(x)$ and then click a seed point close to the root. The root—together with its coordinates—appears.

Step a: Click the function:

\[f(x) = \sin(x) \]

Step b: Click the seed point near the root:

\[f(x) = \sin(x) \]

\[x_{\text{Root}} = -3.14159 \]

\[y_{\text{Root}} = 0.00000 \]

Remark: The y-coordinate is displayed as a check.
2. **Root**: \(f(x) = 0; \) Click \(f(x); \) PtA; PtB

To determine a root we search from PtA to PtB for a change in sign that’s not an asymptote. Once we find a change in sign, we do a binary search to approximate the root.

This presupposes that we know an interval containing the desired root.

To use the **Root** on interval tool, first click the function \(f(x) \) and then click to Define PtA and PtB, the lower and upper bounds of the interval. The root appears, together with its coordinates.

Step a: Click the function:

![Graph of \(f(x) = \sin(x) \)](image1)

Step b: Define PtA and PtB, the lower and upper bounds:

![Graph with PtA, PtB, and Root](image2)

Remark: The \(y \)-coordinate is displayed as a check.
3. **Intersection**: \(f(x) = g(x) \); Click \(f(x) \); \(g(x) \); SeedPt

To determine the intersection points for two graphs we use Newton's method with 10 iterations to solve the equation \(f(x) = g(x) \):

\[
x \rightarrow x - \frac{f(x) - g(x)}{f'(x) - g'(x)}
\]

This presupposes that you click a seed point fairly close to the desired intersection point.

To use the **Intersection** tool, first click the two functions \(f(x) \) and \(g(x) \) and then click a seed point close to the intersection point. Once the functions have been clicked the intersection point appears close to the pointer together with its \(x \)-coordinate as well as the values of \(f(x) \) and \(g(x) \) (as a numerical check of the equation solving).

Step a: Click the functions \(f(x) \) and \(g(x) \):

Step b: Click the seed point near the intersection:
4. **Intersection**: \(f(x) = g(x) \); Click \(f(x) \); \(g(x) \); PtA; PtB

To determine an intersection we search from PtA to PtB for a change in the sign of the difference of the two functions. Once we find a change in sign, we do a binary search to approximate the intersection.

This presupposes that we know an interval containing the desired intersection.

To use the **Intersection** tool, first click functions \(f(x) \) and \(g(x) \) and then click to define the lower and upper bounds of the interval. The intersection appears, with its \(x \)-coordinate as well as the values of \(f(x) \) and \(g(x) \) (as a numerical check of the equation solving).

Step a: Click the functions \(f(x) \) and \(g(x) \):

![Graph showing functions and intersection](image)

Step b: Define PtA and PtB, the lower and upper bounds:

![Graph showing PtA and PtB](image)
5. Max/Min: Max/Min \(f'(x) = 0 \); Click f(x); SeedPt

To determine stationary points we use Newton’s method with 10 iterations to solve the equation \(f'(x) = 0 \):

\[
x \rightarrow x - \frac{f'(x)}{f''(x)}
\]

This presupposes a selection of a seed point fairly close to the desired stationary point.

To use the Max/Min tool, click the function \(f(x) \) and then click a seed point close to the stationary point. Once the function has been clicked the stationary point appears on the screen close to the pointer together with its coordinates.

Step a: Click the function:

![Function plot](image1)

Step b: Click the seed point near the extremum:

![Function plot with extremum](image2)
6. Local Min: Click $f(x)$; PtA; PtB

To find a local minimum we search from PtA to PtB for the first change from a decreasing function to an increasing function. Once we find such a change, we do a binary search to approximate the minimum.

This presupposes that we know an interval containing the desired minimum.

To use the **Local Min** tool, first click the function $f(x)$ and then click to define PtA and PtB, the lower and upper bounds of the interval. The minimum appears, together with its coordinates.

Step a: Click the function:

![Graph with function $f(x) = \sin(4\cdot x) - 0.2\cdot x$](image1)

Step b: Define PtA and PtB, the lower and upper bounds:

![Graph with function $f(x) = \sin(4\cdot x) - 0.2\cdot x$ showing minimum point](image2)
7. **Local Max**: Click $f(x)$; PtA; PtB

To find a local maximum we search from PtA to PtB for the first change from an increasing function to a decreasing function. Once we find such a change, we do a binary search to approximate the maximum.

This presupposes that we know an interval containing the desired maximum.

To use the **Local Max** tool, first click the function $f(x)$ and then click to define PtA and PtB, the lower and upper bounds of the interval. The maximum appears, together with its coordinates.

Step a: Click the function:

![Graph of $f(x) = \sin(4-x)+0.2\cdot x$](image1)

Step b: Define PtA and PtB, the lower and upper bounds:

![Graph with PtA and PtB labeled](image2)
8. Min on Interval: Click f(x); N; PtA; PtB

To determine a minimum on an interval we divide the interval from PtA to PtB into \(N \) subintervals, evaluate the function at each subinterval boundary, and choose the boundary at which the function has the smallest value. From this boundary we do a binary search to approximate the minimum.

This presupposes that we know an interval containing the desired minimum. Correct identification of the absolute minimum depends on the relationship between the variability of the function and the width of the subintervals. If the function varies greatly within the width of a subinterval, evaluating the function at the boundaries may not be sufficient to identify the absolute minimum. This risk is reduced with smaller subintervals (by reducing the difference between upper and lower bounds), but there’s no way to guarantee finding the absolute minimum for an arbitrary function.

To use the Min on Interval tool, click the function \(f(x) \) and \(N \), the desired number of subintervals. Then click to define PtA and PtB, the lower and upper bounds of the interval. The minimum appears, together with its coordinates.

Step a: Click the function:

![Graph of f(x) = sin(4-x) - 0.1x](image1)

Step b: Click PtA and PtB, the lower and upper bounds:

![Graph showing minimum point](image2)
9. Max on Interval: Click f(x); N; PtA; PtB

To determine a maximum on an interval we divide the interval from PtA to PtB into \(N \) subintervals, evaluate the function at each subinterval boundary, and choose the boundary at which the function has the greatest value. From this boundary we do a binary search to approximate the maximum.

This presupposes that we know an interval containing the desired maximum. Correct identification of the absolute maximum depends on the relationship between the variability of the function and the width of the subintervals. If the function varies greatly within the width of a subinterval, evaluating the function at the boundaries may not be sufficient to identify the absolute maximum. This risk is reduced with smaller subintervals (by reducing the difference between upper and lower bounds), but there’s no way to guarantee finding the absolute maximum for an arbitrary function.

To use the Max on Interval tool, click the function \(f(x) \) and \(N \), the desired number of subintervals. Then click to define PtA and PtB, the lower and upper bounds of the interval. The maximum appears, together with its coordinates.

Step a: Click the function:

\[
f(x) = \sin(4-x)+0.1\cdot x
\]

Step b: Click PtA and PtB, the lower and upper bounds:
10. **Tangent**: Click f(x); Pt

To determine a tangent we use its slope \(f'(x_0) \) as well as its point of contact \((x_0, f(x_0))\). This leads to the displaced point on the tangent:

\[
(x_0 + 1, f(x_0) + f'(x_0))
\]

To use the **Tangent** tool, first click the function \(f(x) \) and then click the point of contact for the tangent. Once you have clicked the function the tangent appears on the screen at the graph point with the same \(x \)-coordinate as the pointer together with the equation of the tangent as well as the \(x \)-coordinate for the point of contact.

Step a: Click the function:

![Graph showing the function f(x) = sin(x)](image)

Step b: Click to define the point of contact for the tangent:

![Graph showing the tangent with equation y = 0.73073x - 2.16208](image)

Remark: The above tangent has been constructed as a geometric line. If you need the tangent as a graph of a Taylor polynomial (e.g. to be able to compute intersection points with the tangent) you should plot a new function entering the symbolic equation for the tangent instead: \(f(x_0) + f'(x_0) \cdot (x - x_0) \).
11. **Tangent of inflection**: Click f(x); SeedPt

To determine a point of inflection together with its associated tangent we use Newton’s method with 10 iterations to solve the equation $f''(x) = 0$:

$$x \rightarrow x - \frac{f''(x)}{f'''(x)}$$

This presupposes that you select a seed point fairly close to the desired inflection point.

To use the **Inflection** tool, click the function $f(x)$ and then click the inflection point. Once you have clicked the function the inflection point with its associated tangent appears on the screen close to the pointer together with its equation as well as the coordinates of the point of inflection.

Step a: Click the function:

![Graph showing f(x) = sin(x)](image)

Step b: Click the seed point near the point of inflection:

![Graph showing inflection point and tangent line](image)
12. Normal: Click f(x); Pt

To determine a normal we use its slope \(-1/f'(x_0)\) and its foot \((x_0, f(x_0))\) as well as the displaced point:

\[
\left(x_0 + 1, f(x_0) - \frac{1}{f'(x_0)} \right).
\]

To use the Normal tool, click the function \(f(x)\) and then click the foot of the normal. Once you have clicked the function the normal with its foot appears on the screen at the graph point with the same \(x\)-coordinate as the pointer together with the equation of the normal as well as the \(x\)-coordinate of the foot.

Step a: Click the function:

![Graph of \(f(x) = \sin(x)\)](image)

Step b: Click the foot of the normal:

![Graph showing normal and its equation](image)

Remark: The above normal has been constructed as a geometric line. If you need the normal as a graph of a first order polynomial (e.g. to be able to compute intersection points with the normal) you should plot a new function entering the symbolic equation for the normal instead: \(f(x_0) - \frac{1}{f'(x_0)} \cdot (x - x_0)\).
13. **Curvature**: Click \(f(x); \) Pt

To determine the center of curvature we use its coordinates:

\[
\left(x_0 - \frac{f'(x_0)}{f''(x_0)} \cdot \left(1 + f'(x_0)^2\right), f(x_0) + \frac{1}{f''(x_0)} \cdot \left(1 + f'(x_0)^2\right) \right)
\]

To use the **Curvature** tool, click the function \(f(x) \) and then click the point of contact for the curvature circle. Once you have clicked the function the curvature circle with its centre appears on the screen at the graph point with the same \(x \)-coordinate as the pointer together with the equation of the circle as well as the coordinates of the centre and the radius of the circle.

Step a: Click the function:

![Graph showing the function \(f(x) = \sin(x) \)](image)

Step b: Click the point of contact:

![Graph showing the curvature circle and its centre](image)

Remark: The curvature centre is a point on the normal. In fact it is the limiting point of the intersection between neighboring normals.
Methods of integration: Some general remarks

To calculate numerically a definite integral

\[\int_a^b f(x)dx \]

we use Gauss' 3-point method which is as simple to implement as Simpson's 3-point method, but which is far more accurate. It is based upon the approximate summation:

\[
\frac{h}{18} \left(5 \cdot f \left(a + \frac{h}{2} \left(1 - \frac{3}{\sqrt{5}} \right) \right) + 8 \cdot f \left(a + \frac{h}{2} \right) + 5 \cdot f \left(a + \frac{h}{2} \left(1 + \frac{3}{\sqrt{5}} \right) \right) \right)
\]

where \(h \) denotes the length of the interval: \(h = b - a \).

Depending on how well behaved the function is you can obtain a reasonable value using only a limited number of partitions. If the function is smooth and slowly varying across the interval the value of the Gauss sum will typically stabilize after only 3-4 partitions. So for smooth functions 10 partitions will typically suffice. But if the function is rapidly varying or perhaps only piecewise smooth or have a vertical tangent you may need more partitions e.g. 100 partitions to stabilize the Gauss sum at its limit.

For these as well as other technical reasons the number of partitions is part of the tool! Before you can evaluate a definite integral numerically, first introduce a parameter \(N \) (or use a calculation or a measurement to compute the value of the parameter), which denotes the number of partitions of the domain of the integral.

This has both benefits and draw backs. Among the benefits are the following:

1. The user is reminded that the calculation is based upon a numerical approximation and not some kind of symbolic evaluation.

2. The user can check the accuracy of the calculation by doubling up the number of partitions. If the value of the integral approximation changes you must continue doubling up the parameter until the value is stable. In this way the experienced user can guarantee the accuracy of the result, while the inexperienced user can use a fairly high number, e.g. 100, and hope everything will still work out okay.

3. If the integral is used in further constructions e.g. a locus, it is important to keep down the number of partitions in order to keep the computation time low as well (the same holds for the number of points on the locus). But then it is clearly advantageous that you can select the number of partitions yourself, so that the computations is executed fast, while making it possible to check visually that the locus has stabilized on the screen.

Conclusion:

\[\text{When you want to integrate, always remember to first introduce a parameter } N \text{ denoting the number of partitions!} \]
14. **Integral with one fn:** Click f(x); N; PtA; PtB

If you want to find the area of a standard region enclosed by a graph of a positive function \(f \), the \(x \)-axis and two vertical lines \(x = a \) and \(x = b \), you must compute the definite integral:

\[
\int_{a}^{b} f(x)\,dx .
\]

To use the **Integral with one fn** tool, click a function as well as the number of partitions. Then you must click the initial point \(A \) and the final point \(B \). The region corresponding to the integration is hatched in a brown color for the part of the region above the \(x \)-axis and a blue color for the part below the \(x \)-axis. The area of the brown region contributes positively to the integral, while the blue region contributes negatively to the integral. The boundary values of the integration domain as well as the (approximate) integral are displayed. Remember that the initial point must lie to the left of the final point – unless you want to integrate backwards resulting in the opposite sign.

Step a: Click the function \(f(x) \) and the number of partitions \(N \):

Step b: Click to define the initial and final boundary points:

Remark: The difference between the area of the brown region and the area of the blue region is thus 0.97033.
15. Integral between two fns: Click f(x); g(x); N; PtA; PtB

To find the area enclosed between the graphs of two functions \(f \) and \(g \) requires the computation of an integral of the form:

\[
\int_a^b (f(x) - g(x)) \, dx
\]

To use the Integration between two fns tool, first click the two functions \(f(x) \) and \(g(x) \) as well as the number of partitions \(N \). Then you must click the initial point PtA and the final point PtB. The region corresponding to the integration is hatched in a brown color for the part of the region where the graph of \(f \) is the upper graph and a blue color for the part where the graph of \(g \) is the upper graph. The area of the brown region contributes positively to the integral, while the blue region contributes negatively to the integral. The boundary values of the integration domain as well as the (approximate) integral are displayed. Remember that the initial point must lie to the left of the final point – unless you want to integrate backwards resulting in the opposite sign.

Step a: Click \(f(x) \) and \(g(x) \) and the number of partitions \(N \):

\[f(x) = \sin(x) \quad N = 10.00000 \quad g(x) = \sin(2\cdot x) \]

Step b: Click to define the initial and final boundary points:

\[f(x) = \sin(x) \quad N = 10.00000 \quad g(x) = \sin(2\cdot x) \quad x_A = 0.00000 \quad x_B = 3.14159 \]
Integral = 2.00000

Remark: The difference between the area of the large brown region and the small blue region is thus 2.
16. Arc Length: Click f(x); N; PtA; PtB

To determine the arc length of an arc corresponding to a section of a graph of a differentiable function f, with the arc starting at $x = a$ and ending at $x = b$, you must compute the integral:

$$\int_{a}^{b} \sqrt{1 + f'(x)^2} \, dx$$

To use the Arc Length tool, click the function $f(x)$ and the number of partitions N. Then you must click the initial point PtA and the final point PtB for the arc. The section of the graph corresponding to the arc is colored brown. The boundary values of the integration domain as well as the (approximate) arc length are displayed. Remember that the initial point must lie to the left of the final point – unless you want to integrate backwards resulting in the opposite sign.

Step a: Click the function $f(x)$ and the number of partitions N:

![Step a Diagram]

Step b: Click to define the initial and final boundary points:

![Step b Diagram]
17. Antiderivative: Click f(x); N; StartPt; EndPt

To be able to draw the graph of the antiderivative (primitive) \(F(x) \) associated with a given function \(f(x) \) as a locus, you must first compute the integral:

\[
F(x) = y_0 + \int_{x_0}^{x} f(t) \, dt.
\]

To use the Antiderivative tool, first click the function \(f(x) \) and the number of partitions \(N \). Then click an initial point \((x_0, y_0)\) for the graph of the antiderivative as well as an end point for the domain of the antiderivative. The graph of the antiderivative is drawn as a locus together with the domain on the \(x \)-axis. To draw the part of the graph to the left of the initial point, choose the end point to the left of the initial point.

Step a: Click the function \(f(x) \) and the number of partitions \(N \):

Step b: Click the starting point and the domain end point:
Appendix

The Gauss’ 3-point method for numerical integration

Numerical integration is based upon an approximation of the integral with a weighted average of the form:

\[
\int_a^b f(x) \, dx = (p_1 \cdot f(x_1) + p_2 \cdot f(x_2) + \ldots + p_n \cdot f(x_n)) \cdot (b - a)
\]

There exist a variety of strategies for how to select the partition points \(x_1, \ldots, x_n\) as well as the weight factors \(p_1, \ldots, p_n\). To make a judgment of how accurate the method is we use the following family of test integrals

\[
\int_{-1}^{1} 1 \cdot dx, \quad \int_{-1}^{1} x \cdot dx, \quad \int_{-1}^{1} x^2 \cdot dx, \quad \int_{-1}^{1} x^3 \cdot dx, \quad \int_{-1}^{1} x^4 \cdot dx, \quad \ldots
\]

If the numerical integration technique works out the actual values of the first \(n+1\) test integrals, up to the integral

\[
\int_{-1}^{1} x^n \cdot dx
\]

then it turns out it will actually integrate any polynomial of degree \(n\) accurately over any interval \([a; b]\). The particular technique for numerical integration is then said to be of order \(n+1\).

Simpson’s method

Simpson’s method belongs to a family of methods using an equidistant partition of the integration domain. Simpson’s method is a 3-point method: It uses the partition points -1, 0 and 1. For reasons of symmetry it uses symmetrical weights. The Simpson method is based upon a weighted average of the form

\[
(p \cdot f(-1) + q \cdot f(0) + p \cdot f(1)) \cdot 2.
\]

The symmetry takes care of all the test integrals of odd order. As regards the test integrals of even order we obtain:

\[
2 = \int_{-1}^{1} 1 \cdot dx = (p + q + p) \cdot 2
\]

\[
\frac{2}{3} = \int_{-1}^{1} x^2 \cdot dx = (p \cdot (-1)^2 + q \cdot 0^2 + p \cdot 1^2) \cdot 2 = 2p \cdot 2
\]

It follows that we must select the following values of the weight factors \(p\) and \(q\):

\[
2 \cdot p + q = 1 \quad \text{and} \quad 2 \cdot p = \frac{1}{3}.
\]

The first condition simply states that the sum of the weight factors as expected must be 1. The other condition tells us that \(p = 1/6\) and consequently \(q = 2/3\). Simpson’s method is thus based upon the following approximation:

\[
\int_{a}^{b} f(x) \cdot dx \approx \left(\frac{1}{6} \cdot f(a) + \frac{2}{3} \cdot f\left(\frac{a+b}{2}\right) + \frac{1}{6} \cdot f(b)\right) \cdot (b - a) = \frac{f(a) + 4 \cdot f\left(\frac{a+b}{2}\right) + f(b)}{2} \cdot \frac{1}{6} \cdot (b - a)
\]

As we see Simpson’s method is a fourth order method: It calculates integrals of cubic polynomials accurately.
As an example of Simpson’s method for numerical integration we look at the following simple definite integral:

\[2 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(x) \, dx \approx \frac{\cos(-\frac{\pi}{2}) + 4 \cdot \cos(0) + \cos(\frac{\pi}{2})}{6} = \frac{0 + 4 \cdot 1 + 0}{6} = \frac{2\pi}{3} = 2.094... \]

The relative error is thus approximately 5%. Notice by the way that Simpson’s method corresponds to replacing \(\pi \) with 3!

Gauss’ method

Gauss improved Simpson’s method by using his freedom to choose a more appropriate set of partition points. Like Simpson’s method Gauss’ method is a 3-point method with a symmetrical choice of partition points: Gauss’ method uses the partition points \(-x\), 0 and \(x\). For reasons of symmetry the weight factors are also symmetrical. Gauss’ method is based upon a weighted average of the following form:

\[(p \cdot f(-x) + q \cdot f(0) + p \cdot f(x))^2 \]

As before the symmetry takes care of all test integrals of odd order. As regards the test integrals of even order we obtain:

\[2 = \int_{-1}^{1} 1 \cdot dx \approx (p + q + p) \cdot 2 = (2 \cdot p + q) \cdot 2 \]

\[\frac{2}{3} = \int_{-1}^{1} x^2 \cdot dx \approx (p \cdot (-x)^2 + q \cdot 0^2 + p \cdot x^2) \cdot 2 = 2p \cdot x^2 \cdot 2 \]

\[\frac{2}{5} = \int_{-1}^{1} x^4 \cdot dx \approx (p \cdot (-x)^4 + q \cdot 0^4 + p \cdot x^4) \cdot 2 = 2p \cdot x^4 \cdot 2 \]

It follows that the weight factors \(p \) and \(q \) must satisfy the conditions:

\[2 \cdot p + q = 1, \quad 2 \cdot p \cdot x^2 = \frac{1}{3} \quad \text{and} \quad 2 \cdot p \cdot x^4 = \frac{1}{5} \cdot \]

The first condition simply states that the sum of the weight factors as expected must be 1. The other conditions simplify to

\[p \cdot x^2 = \frac{1}{6} \quad \text{and} \quad p \cdot x^4 = \frac{1}{10} \]

By division we obtain the equation \(x^2 = \frac{\frac{1}{6}}{\frac{1}{10}} = \frac{5}{3} \Rightarrow x = \sqrt{\frac{5}{3}} \). Substituting this into the first condition we similarly get \(p \cdot \frac{3}{5} = \frac{1}{6} \Rightarrow p = \frac{5}{18} \). This leads to \(q = \frac{8}{18} = \frac{4}{9} \).

Gauss’ method is thus based upon the following approximation:

\[\int_{-1}^{1} f(x) \cdot dx \approx \frac{5 \cdot f(-\sqrt{\frac{5}{3}}) + 8 \cdot f(0) + 5 \cdot f(\sqrt{\frac{5}{3}})}{18} \cdot 2 \]

When applied to an arbitrary domain of integration \([a;b]\) we use that 0 corresponds to the centre of the domain,

\[\frac{a + b}{2} \]

whereas 1 corresponds to the radius of the domain,

\[\frac{b - a}{2} \]
Thus the above formula is extended in the following way:

\[
\int_{a}^{b} f(x) \cdot dx = \frac{5 \cdot f\left(\frac{a+b}{2} - \frac{b-a}{\sqrt{5}}\right) + 8 \cdot f\left(\frac{a+b}{2}\right) + 5 \cdot f\left(\frac{a+b}{2} + \frac{b-a}{\sqrt{5}}\right)}{18} \cdot (b-a)
\]

It follows that Gauss’ 3-point method is a **sixth order method**—it calculates integrals of quintic polynomials accurately.

As an example of Gauss' method for numerical integration we look at the same simple definite integral as before:

\[
2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos(x) \cdot dx = \frac{5 \cdot \cos\left(-\frac{\pi}{4} \cdot \sqrt{\frac{3}{5}}\right) + 8 \cdot \cos(0) + 5 \cdot \cos\left(\frac{\pi}{4} \cdot \sqrt{\frac{3}{5}}\right)}{18} \cdot \pi
\]

\[
= \frac{5 \cdot \cos\left(\frac{\pi}{4} \cdot \sqrt{\frac{3}{5}}\right) + 4}{9} \cdot \pi = 2.0013889...
\]

The relative error is below 1%.

Gauss’ method is thus much more accurate than Simpson’s method. Despite the somewhat clumsy choice of partition points it is therefore clearly preferable to use Gauss’ method for numerical integration. There are even theoretical advantages: Since Gauss’ method avoids using the boundary points for the estimation it can also handle integrands with vertical asymptotes at the boundary.